Skip to main content
Log in

Structured illumination microscopy for super-resolution and optical sectioning

  • Invited Review
  • Optics
  • Published:
Chinese Science Bulletin

Abstract

Optical microscopy plays an essential role in biological studies due to its capability and compatibility of non-contact, minimally invasive observation and measurement of live specimens. However, the conventional optical microscopy only has a spatial resolution about 200 nm due to the Abbe diffraction limit, and also lacks the ability of three-dimensional imaging. Super-resolution far-field optical microscopy based on special illumination schemes has been dramatically developed over the last decade. Among them, only the structured illumination microscopy (SIM) is of wide-field geometry that enables it easily compatible with the conventional optical microscope. In this article, the principle of SIM was introduced in terms of point spread function (PSF) and optical transform function (OTF) of the optical system. The SIM for super-resolution (SIM-SR) proposed by Gustafsson et al. and the SIM for optical sectioning (SIM-OS) proposed by Neil et al. are the most popular ones in the research community of microscopy. They have the same optical configuration, but with different data post-processing algorithms. We mathematically described the basic theories for both of the SIMs, respectively, and presented some numerical simulations to show the effects of super-resolution and optical sectioning. Various approaches to generation of structured illumination patterns were reviewed. As an example, a SIM system based on DMD-modulation and LED-illumination was demonstrated. A lateral resolution of 90 nm was achieved with gold nano-particles. The optical sectioning capability of the microscope was demonstrated with Golgi-stained mouse brain neurons, and the sectioning strength of 930 nm was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Köhler A (1893) Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke. Zeitschrift für wissenschaftliche mikroskopie und für mikroskopische technik 10:433–440

    Google Scholar 

  2. Abbe E (1873) Beitrage zur Theorie des Mikroskops und der mikroskopi schen Wahrnehmung. Arch Mikroskop Anat 9:413–420

    Google Scholar 

  3. Patterson GH, Knobel SM, Sharif WD et al (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790

    Google Scholar 

  4. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058

    Google Scholar 

  5. Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943

    Google Scholar 

  6. Gonçalves MS (2009) Fluorescent labelling of biomolecules with organic probes. Chem Rev 109:190–212

    Google Scholar 

  7. Li Z, Zhang J, Yang J et al (2007) Ultrahigh spatiotemporal resolved spectroscopy. Sci China Ser G Phys Mech Astron 50:681–690

    Google Scholar 

  8. Zhang X, Han X, Wu F et al (2013) Nano-bio interfaces probed by advanced optical spectroscopy: from model system studies to optical biosensors. Chin Sci Bull 58:2537–2556

    Google Scholar 

  9. Lü T, Xiao Q, Li Z et al (2012) Evaluation of ablation differences in air and water for hard tissues using full-field optical coherence microscopy. Chin Sci Bull 57:833–837

    Google Scholar 

  10. Ding Y, Xi P, Ren Q (2011) Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy. Chin Sci Bull 56:1857–1876

    Google Scholar 

  11. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Google Scholar 

  12. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24:954–956

    Google Scholar 

  13. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Google Scholar 

  14. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Google Scholar 

  15. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    Google Scholar 

  16. Bates M, Huang B, Dempsey GT et al (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 21:1749–1753

    Google Scholar 

  17. Huang B, Wang W, Bates M et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 8:810–813

    Google Scholar 

  18. Wilson T (1990) Confocal microscopy. Academic Press, London

    Google Scholar 

  19. So PTC, Dong CY, Masters BR et al (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429

    Google Scholar 

  20. So PTC (2004) Multi-photon excitation fluorescence microscopy. Frontiers in Biomedical Engineering. Springer, New York, pp 529–544

    Google Scholar 

  21. Huisken J, Swoger J, Bene FD et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 13:1007–1009

    Google Scholar 

  22. Keller PJ, Schmidt AD, Wittbrodt J et al (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 14:1065–1069

    Google Scholar 

  23. Křížek P, Hagen GM (2012) Current optical sectioning systems in florescence microscopy. Formatex, Spain, pp 826–832

    Google Scholar 

  24. Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22:1905–1907

    Google Scholar 

  25. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Google Scholar 

  26. Walker JG (2001) Non-scanning confocal fluorescence microscopy using speckle illumination. Opt Commun 189:221–226

    Google Scholar 

  27. Heintzmann R, Benedetti PA (2006) High-resolution image reconstruction in fluorescence microscopy with patterned excitation. Appl Opt 45:5037–5045

    Google Scholar 

  28. Ventalon C, Mertz J (2005) Quasi-confocal fluorescence sectioning with dynamic speckle illumination. Opt Lett 30:3350–3352

    Google Scholar 

  29. Waterman-Storer CM, Desai A, Bulinski JC et al (1998) Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 8:1227–1230

    Google Scholar 

  30. Frohn JT, Knapp HF, Stemmer A (2000) True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. PNAS 97:7232–7236

    Google Scholar 

  31. Fedosseev R, Belyaev Y, Frohn J et al (2005) Structured light illumination for extended resolution in fluorescence microscopy. Opt Lasers Eng 43:403–414

    Google Scholar 

  32. Mudry E, Belkebir K, Girard J et al (2012) Structured illumination microscopy using unknown speckle patterns. Nat Photonics 6:312–315

    Google Scholar 

  33. Heintzmann R, Cremer CG (1999) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE 3568:185–196

    Google Scholar 

  34. Muller CB, Enderlein J (2010) Image Scanning Microscopy. Phys Rev Lett 104:198101

    Google Scholar 

  35. York AG, Parekh SH, Nogare DD et al (2012) Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9:749–754

    Google Scholar 

  36. Littletona B, Lai K, Longstaff D et al (2007) Coherent super-resolution microscopy via laterally structured illumination. Micron 38:150–157

    Google Scholar 

  37. Ryu J, Hong SS, Horn BKP et al (2006) Multibeam interferometric illumination as the primary source of resolution in optical microscopy. Appl Phys Lett 88:171112

    Google Scholar 

  38. Wang L, Pitter MC, Somekh MG (2011) Wide-field high-resolution structured illumination solid immersion fluorescence microscopy. Opt Lett 36:2794–2796

    Google Scholar 

  39. Chang BJ, Chou LJ, Chang YC et al (2009) Isotropic image in structured illumination microscopy patterned with a spatial light modulator. Opt Express 17:14710–14721

    Google Scholar 

  40. Shao L, Kner P, Rego EH et al (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8:1044–1046

    Google Scholar 

  41. Hirvonen LM, Wicker K, Mandula O et al (2009) Structured illumination microscopy of a living cell. Eur Biophys J 38:807–812

    Google Scholar 

  42. Kner P, Chhun BB, Griffis ER et al (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6:339–342

    Google Scholar 

  43. Fiolka R, Shao L, Rego EH et al (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. PNAS. doi:10.1073/pnas:1119262109

    Google Scholar 

  44. Gardeazábal Rodríguez PF, Sepulveda E, Dubertret B et al (2008) Axial coding in full-field microscopy using three-dimensional structured illumination implemented with no moving parts. Opt Lett 33:1617–1619

    Google Scholar 

  45. Docter MW, Van den Berg PM, Alkemade PF et al (2007) Structured illumination microscopy using extraordinary transmission through sub-wavelength hole-arrays. J Nanophoton 1:011665

    Google Scholar 

  46. Dan D, Lei M, Yao B et al (2013) DMD-based LED-illumination Super-resolution and optical sectioning microscopy. Sci Rep 3:1116

    Google Scholar 

  47. Shroff SA, Fienup JR, Williams DR (2008) OTF compensation in structured illumination superresolution images. Proc SPIE 7094:709402

    Google Scholar 

  48. Somekh MG, Hsu K, Pitter MC (2011) Effect of processing strategies on the stochastic transfer function in structured illumination microscopy. J Opt Soc Am A 28:1925–1934

    Google Scholar 

  49. Somekh MG, Hsu K, Pitter MC (2009) Stochastic transfer function for structured illumination microscopy. J Opt Soc Am A 26:1630–1637

    Google Scholar 

  50. Somekh MG, Hsu K, Pitter MC (2008) Resolution in structured illumination microscopy: a probabilistic approach. J Opt Soc Am A 25:1319–1329

    Google Scholar 

  51. Shroff SA, Fienup JR, Williams DR (2009) Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. J Opt Soc Am A 26:413–424

    Google Scholar 

  52. Shroff SA, Fienup JR, Williams DR (2010) Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results. J Opt Soc Am A 27:1770–1782

    Google Scholar 

  53. Wicker K, Mandula O, Best G et al (2013) Phase optimisation for structured illumination microscopy. Opt Express 21:2032–2049

    Google Scholar 

  54. Orieux F, Sepulveda E, Loriette V et al (2012) Bayesian estimation for optimized structured illumination microscopy. IEEE Trans Image Process 21:601–614

    Google Scholar 

  55. Ryu J, Horn BKP, Mermelstein MS et al (2003) Application of structured illumination in nano-scale vision. IEEE Workshop on Computer Vision for the Nano-Scale, Wisconsin, pp 16–22

    Google Scholar 

  56. Débarre D, Botcherby EJ, Booth MJ et al (2008) Adaptive optics for structured illumination microscopy. Opt Express 16:9290–9305

    Google Scholar 

  57. Beversluis MR, Bryant GW, Stranick SJ (2008) Effects of inhomogeneous fields in superresolving structured-illumination microscopy. J Opt Soc Am A 25:1371–1377

    Google Scholar 

  58. Lefman J, Scott K, Stranick S (2011) Live, video-rate super-resolution microscopy using structured illumination and rapid GPU-based parallel processing. Microsc Microanal 17:191–196

    Google Scholar 

  59. Gustafsson MG, Shao L, Carlton PM et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Google Scholar 

  60. Frohn JT, Knapp HF, Stemmer A (2001) Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation. Opt Lett 26:828–830

    Google Scholar 

  61. Schermelleh L, Carlton PM, Haase S et al (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 6:1332–1336

    Google Scholar 

  62. Fiolka R, Beck M, Stemmer A (2008) Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator. Opt Lett 33:1629–1631

    Google Scholar 

  63. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. PNAS 102:13081–13086

    Google Scholar 

  64. Heintzmann R (2003) Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron 34:283–291

    Google Scholar 

  65. Zhang H, Zhao M, Peng L (2011) Nonlinear structured illumination microscopy by surface plasmon enhanced stimulated emission depletion. Opt Express 19:24783–24794

    Google Scholar 

  66. Gur A, Zalevsky Z, Micó V et al (2011) The limitations of nonlinear fluorescence effect in super resolution saturated structured illumination microscopy system. J Fluoresc 21:1075–1082

    Google Scholar 

  67. Regoa EH, Shao L, Macklin JJ et al (2011) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. PNAS. doi:10.1073/pnas.1107547108

    Google Scholar 

  68. Hirvonen L, Mandula O, Wicker K et al (2008) Structured illumination microscopy using photoswitchable fluorescent proteins. Proc SPIE 6861:68610L

    Google Scholar 

  69. Keller PJ, Schmidt AD, Santella A et al (2010) Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods 7:637–642

    Google Scholar 

  70. Planchon TA, Gao L, Milkie DE et al (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8:417–423

    Google Scholar 

  71. Gao L, Shao L, Higgins CD et al (2012) Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151:1370–1385

    Google Scholar 

  72. Shao L, Winoto L, Agard DA et al (2012) Interferometer-based structured-illumination microscopy utilizing complementary phase relationship through constructive and destructive image detection by two cameras. J Microsc 246:229–236

    Google Scholar 

  73. Neumann A, Kuznetsova Y, Brueck SR (2008) Structured illumination for the extension of imaging interferometric microscopy. Opt Express 16:6785–6793

    Google Scholar 

  74. Mandula O, Kielhorn M, Wicker K et al (2012) Line scan-structured illumination microscopy super-resolution imaging in thick fluorescent samples. Opt Express 20:24167–24174

    Google Scholar 

  75. Shao L, Isaac B, Uzawa S et al (2008) I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys J 94:4971–4983

    Google Scholar 

  76. Chen J, Xu Y, Lv X et al (2013) Super-resolution differential interference contrast microscopy by structured illumination. Opt Express 21:112–121

    Google Scholar 

  77. Strauss MP, Liew ATF, Turnbull L et al (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10:e1001389

    Google Scholar 

  78. Sonnen KF, Schermelleh L, Leonhardt H et al (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Open Biol 1:965–976

    Google Scholar 

  79. Best G, Amberger R, Baddeley D et al (2011) Structured illumination microscopy of autofluorescent aggregations in human tissue. Micron 42:330–335

    Google Scholar 

  80. Fitzgibbon J, Bell K, King E et al (2010) Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153:1453–1463

    Google Scholar 

  81. Markaki Y, Smeets D, Fiedler S et al (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture. Bio Essays 34:412–426

    Google Scholar 

  82. Cogger VC, McNerney GP, Nyunt T et al (2010) Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. J Struc Biol 171:382–388

    Google Scholar 

  83. Bullen A (2008) Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov 7:54–67

    Google Scholar 

  84. Lu CH, Pégard NC, Fleischer JW (2013) Flow-based structured illumination. Appl Phys Lett 102:161115

    Google Scholar 

  85. Hao XT, Hirvonen LM, Smith TA (2013) Nanomorphology of polythiophene–fullerene bulk-heterojunction films investigated by structured illumination optical imaging and time-resolved confocal microscopy. Methods Appl Fluoresc 1:015004

    Google Scholar 

  86. Chang BJ, Lin SH, Chou LJ et al (2011) Subdiffraction scattered light imaging of gold nanoparticles using structured illumination. Opt Lett 36:4773–4775

    Google Scholar 

  87. Jiang S, Walker JG (2004) Experimental confirmation of non-scanning fluorescence confocal microscopy using speckle illumination. Opt Commun 238:1–12

    Google Scholar 

  88. Jiang S, Walker JG (2005) Non-scanning fluorescence confocal microscopy using speckle illumination and optical data processing. Opt Commun 256:35–45

    Google Scholar 

  89. Jiang S, Walker JG (2009) Speckle-illuminated fluorescence confocal microscopy, using a digital micro-mirror device. Meas Sci Technol 20:065501

    Google Scholar 

  90. Ventalon C, Mertz J (2005) Quasi-confocal fluorescence sectioning with dynamic speckle illumination. Opt Lett 30:3350–3352

    Google Scholar 

  91. Ventalon C, Mertz J (2006) Dynamic speckle illumination microscopy with translated versus randomized speckle patterns. Opt Lett 14:7198–7209

    Google Scholar 

  92. Ventalon C, Heintzmann R, Mertz J (2007) Dynamic speckle illumination microscopy with wavelet prefiltering. Opt Lett 32:1417–1419

    Google Scholar 

  93. Lim D, Chu KK, Mertz J (2008) Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Opt Lett 33:1819–1821

    Google Scholar 

  94. Lim D, Ford TN, Chu KK et al (2011) Optically sectioned in vivo imaging with speckle illumination HiLo microscopy. J Biomed Opt 16:016014

    Google Scholar 

  95. Choi Y, Yang TD, Lee KJ et al (2011) Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination. Opt Lett 36:2465–2467

    Google Scholar 

  96. Neil MAA, Wilson T, Juskaitis R (1998) A light efficient optically sectioning microscope. J Microsc 189:114–117

    Google Scholar 

  97. Fukano T, Miyawaki A (2003) Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples. Appl Opt 42:4119–4124

    Google Scholar 

  98. Karadaglić D, Juškaitis R, Wilson T (2002) Confocal endoscopy via structured illumination. Scanning 24:301–304

    Google Scholar 

  99. Monneret S, Rauzi M, Lenne PF (2006) Highly flexible whole-field sectioning microscope with liquid-crystal light modulator. J Opt A 8:S461

    Google Scholar 

  100. Delica S, Blanca CM (2007) Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination. Appl Opt 46:7237–7243

    Google Scholar 

  101. Mazhar A, Cuccia DJ, Gioux S et al (2010) Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging. J Biomed Opt 15:010506

    Google Scholar 

  102. Křížek P, Raška I, Hagen GM (2012) Flexible structured illumination microscope with a programmable illumination array. Opt Express 20:24585–24599

    Google Scholar 

  103. Krzewina LG, Kim MK (2006) Single-exposure optical sectioning by color structured illumination microscopy. Opt Lett 31:477–479

    Google Scholar 

  104. Wicker K, Heintzmann R (2010) Single-shot optical sectioning using polarization-coded structured illumination. J Opt 12:084010

    Google Scholar 

  105. Karadaglić D (2008) Image formation in conventional brightfield reflection microscopes with optical sectioning property via structured illumination. Micron 39:302–310

    Google Scholar 

  106. Karadaglic D, Wilson T (2008) Image formation in structured illumination wide-field fluorescence microscopy. Micron 39:808–818

    Google Scholar 

  107. Barlow AL, Guerin CJ (2007) Quantization of widefield fluorescence images using structured illumination and image analysis software. Microsc Res Tech 70:76–84

    Google Scholar 

  108. Hagen N, Gao L, Tkaczyk TS (2012) Quantitative sectioning and noise analysis for structured illumination microscopy. Opt Express 20:403–413

    Google Scholar 

  109. Schaefer LH, Schuster D, Schaffer J (2004) Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach. J Microsc 216:165–174

    Google Scholar 

  110. Chasles F, Dubertret B, Boccara AC (2007) Optimization and characterization of a structured illumination microscope. Opt Express 15:16130–16140

    Google Scholar 

  111. Cole MJ, Siegel J, Webb SED et al (2001) Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J Microsc 203:246–257

    Google Scholar 

  112. Siegel J, Elson DS, Webb SED et al (2001) Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning. Opt Lett 26:1338–1340

    Google Scholar 

  113. Cole MJ, Siegel J, Webb SED et al (2000) Whole-field optically sectioned fluorescence lifetime imaging. Opt Lett 25:1361–1363

    Google Scholar 

  114. Webb SED, Gu Y, Leveque-Fort S et al (2002) A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning. Rev Sci Instrum 73:1898–1907

    Google Scholar 

  115. Gao L, Bedard N, Hagen N et al (2011) Depth-resolved image mapping spectrometer (IMS) with structured illumination. Opt Express 19:17439–17452

    Google Scholar 

  116. Ducros N, Bassi A, Valentini G et al (2013) Fluorescence molecular tomography of an animal model using structured light rotating view acquisition. J Biomed Opt 18:020503

    Google Scholar 

  117. Lukic V, Markel VA, Schotland JC (2009) Optical tomography with structured illumination. Opt Lett 34:983–985

    Google Scholar 

  118. Bélanger S, Abran M, Intes X et al (2010) Real-time diffuse optical tomography based on structured illumination. J Biomed Opt 15:016006

    Google Scholar 

  119. Berrocal E, Kristensson E, Richter M et al (2008) Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays. Opt Express 16:17870–17881

    Google Scholar 

  120. Kristensson E, Berrocal E, Richter M et al (2008) High-speed structured planar laser illumination for contrast improvement of two-phase flow images. Opt Lett 33:2752–2754

    Google Scholar 

  121. Schröter TJ, Johnson SB, John K et al (2012) Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection. Biomed Opt Express 3:170

    Google Scholar 

  122. Maschio MD, Difato F, Beltramo R et al (2010) Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt Express 18:18720–18731

    Google Scholar 

  123. Ansari Z, Gu Y, Siegel J et al (2002) Wide-field, real-time depth-resolved imaging using structured illumination with photorefractive holography. Appl Phys Lett 81:2148–2150

    Google Scholar 

  124. Karadaglić D, Juškaitis R, Wilson T (2002) Confocal endoscopy via structured illumination. Scanning 24:301–304

    Google Scholar 

  125. Bozinovic N, Ventalon C, Ford T et al (2008) Fluorescence endomicroscopy with structured illumination. Opt Express 16:8016–8025

    Google Scholar 

  126. Berrocal E, Kristensson E, Richter M et al (2008) Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays. Opt Express 16:17870–17881

    Google Scholar 

  127. Kristensson E, Richter M, Pettersson SG et al (2008) Spatially resolved, single-ended two-dimensional visualization of gas flow phenomena using structured illumination. Appl Opt 47:3927–3931

    Google Scholar 

  128. Langhorst MF, Schaffer J, Goetze B (2009) Structure brings clarity: structured illumination microscopy in cell biology. Biotech J 4:858–865

    Google Scholar 

  129. Blamey NJF, Ryder AG, Feely M et al (2008) The application of structured light illumination microscopy to hydrocarbon-bearing fluid inclusions. Geofluids 8:102–112

    Google Scholar 

  130. Gruppetta S, Chetty S (2011) Theoretical study of multispectral structured illumination for depth resolved imaging of non-stationary objects: focus on retinal imaging. Biomedical Opt Express 2:255

    Google Scholar 

  131. Su X, Zhang Q (2010) Dynamic 3-D shape measurement method: a review. Opt Lasers Eng 48:191–204

    Google Scholar 

  132. Salvi J, Pages J, Batlle J (2004) Pattern codification strategies in structured light systems. Pattern Recongn 37:827–849

    Google Scholar 

  133. Rocchini CMPPC, Cignoni P, Montani C et al (2001) A low cost 3D scanner based on structured light. Proc Eurographics 20:299–308

    Google Scholar 

  134. Salvi J, Pages J, Batlle J (2004) Pattern codification strategies in structured light systems. Pattern Recogn 37:827–849

    Google Scholar 

  135. Heintzmann R (2006) Structured illumination methods. Handbook of biological confocal microscopy. Springer, New York, pp 265–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoli Yao.

About this article

Cite this article

Dan, D., Yao, B. & Lei, M. Structured illumination microscopy for super-resolution and optical sectioning. Chin. Sci. Bull. 59, 1291–1307 (2014). https://doi.org/10.1007/s11434-014-0181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0181-1

Keywords

Navigation